Noise Corruption of Empirical Mode Decomposition and its Effect on Instantaneous Frequency

نویسندگان

  • Daniel N. Kaslovsky
  • François G. Meyer
چکیده

Huang’s Empirical Mode Decomposition (EMD) is an algorithm for analyzing nonstationary data that provides a localized time-frequency representation by decomposing the data into adaptively defined modes. EMD can be used to estimate a signal’s instantaneous frequency (IF) but suffers from poor performance in the presence of noise. To produce a meaningful IF, each mode of the decomposition must be nearly monochromatic, a condition that is not guaranteed by the algorithm and fails to be met when the signal is corrupted by noise. In this work, the extraction of modes containing both signal and noise is identified as the cause of poor IF estimation. The specific mechanism by which such “transition” modes are extracted is detailed and builds on the observation of Flandrin and Goncalves that EMD acts in a filter bank manner when analyzing pure noise. The mechanism is shown to be dependent on spectral leak between modes and the phase of the underlying signal. These ideas are developed through the use of simple signals and are tested on a synthetic seismic waveform.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition

This paper introduces a new instantaneous frequency computation approach -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of -Counting Instantaneous Frequency also applies to all the discrete data. For all t...

متن کامل

Emd via mEMD: multivariate noise-Aided Computation of Standard EMD

A noise-assisted approach in conjunction with multivariate empirical mode decomposition (MEMD) algorithm is proposed for the computation of empirical mode decomposition (EMD), in order to produce localized frequency estimates at the accuracy level of instantaneous frequency. Despite many advantages of EMD, such as its data driven nature, a compact decomposition, and its inherent ability to proc...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Advances in Adaptive Data Analysis

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010